Passive manipulation of free-surface instability by deformable solid bilayers.
نویسندگان
چکیده
This study deals with the elastohydrodynamic coupling that occurs in the flow of a liquid layer down an inclined plane lined with a deformable solid bilayer and its consequences on the stability of the free surface of the liquid layer. The fluid is Newtonian and incompressible, while the linear elastic constitutive relation has been considered for the deformable solid bilayer, and the densities of the fluid and the two solids are kept equal. A temporal linear stability analysis is carried out for this coupled solid-fluid system. A long-wave asymptotic analysis is employed to obtain an analytical expression for the complex wavespeed in the low wave-number regime, and a numerical shooting method is used to solve the coupled set of governing differential equations in order to obtain the stability criterion for arbitrary values of the wave number. In a previous work on plane Couette flow past an elastic bilayer, Neelmegam et al. [Phys. Rev. E 90, 043004 (2014)PLEEE81539-375510.1103/PhysRevE.90.043004] showed that the instability of the flow can be significantly influenced by the nature of the solid layer, which is adjacent to the liquid layer. In stark contrast, for free-surface flow past a bilayer, our long-wave asymptotic analysis demonstrates that the stability of the free-surface mode is insensitive to the nature of the solid adjacent to the liquid layer. Instead, it is the effective shear modulus of the bilayer G_{eff} (given by H/G_{eff}=H_{1}/G_{1}+H_{2}/G_{2}, where H=H_{1}+H_{2} is the total thickness of the solid bilayer, H_{1} and H_{2} are the thicknesses of the two solid layers, and G_{1} and G_{2} are the shear moduli of the two solid layers) that determines the stability of the free surface in the long-wave limit. We show that for a given Reynolds number, the free-surface instability is stabilized when G_{eff} decreases below a critical value. At finite wave numbers, our numerical solution indicates that additional instabilities at the free surface and the liquid-solid interface can be induced by wall deformability and inertia in the fluid and solid. Interestingly, the onset of these additional instabilities is sensitive to the relative placements of the two solid layers comprising the bilayer. We show that it is possible to delay the onset of these additional instabilities, while still suppressing the free-surface instability, by manipulating the ratio of the shear moduli and the thicknesses of the two solid layers in the bilayer. At moderate Reynolds number and finite wave number, we demonstrate that an exchange of modes occurs between the gas-liquid and liquid-solid interfacial modes as the solid bilayer becomes more deformable. We demonstrate further that dissipative effects in the individual solid layers have an important bearing on the stability of the system, and they could also be exploited in suppressing the instability. This study thus shows that the ability to passively manipulate and control interfacial instabilities increases substantially with the use of solid bilayers.
منابع مشابه
Control of Marangoni Convection in a Variable-Viscosity Fluid Layer with Deformable Surface
The effectiveness of a proportional feedback control to suppress the Marangoni instability in a variable-viscosity fluid layer with a deformable free upper surface is investigated. Viscosity variation and deformable free surface have destabilizing effects on the stability limit. The stability thresholds for the short-scale mode are strongly dependent on viscosity variation and controller gain w...
متن کاملPolymer-cushioned bilayers. II. An investigation of interaction forces and fusion using the surface forces apparatus.
We have created phospholipid bilayers supported on soft polymer "cushions" which act as deformable substrates (see accompanying paper, Wong, J. Y., J. Majewski, M. Seitz, C. K. Park, J. N. Israelachvili, and G. S. Smith. 1999. Biophys. J. 77:1445-1457). In contrast to "solid-supported" membranes, such "soft-supported" membranes can exhibit more natural (higher) fluidity. Our bilayer system was ...
متن کاملPull-In Instability of MSGT Piezoelectric Polymeric FG-SWCNTs Reinforced Nanocomposite Considering Surface Stress Effect
In this paper, the pull-in instability of piezoelectric polymeric nanocomposite plates reinforced by functionally graded single-walled carbon nanotubes (FG-SWCNTs) based on modified strain gradient theory (MSGT) is investigated. Various types of SWCNTs are distributed in piezoelectric polymeric plate and also surface stress effect is considered in this research. The piezoelectric polymeric nano...
متن کامل3D interactions with a passive deformable haptic glove
This paper explores enhancing mobile immersive augmented reality manipulations by providing a sense of computer-captured touch through the use of a passive deformable haptic glove that responds to objects in the physical environment. The glove extends our existing pinch glove design with a Digital Foam sensor that is placed under the palm of the hand. The novel glove input device supports a ran...
متن کاملPassive Non-Prehensile Manipulation of a Specific Object on Predictable Helix Path Based on Mechanical Intelligence
Object manipulation techniques in robotics can be categorized in two major groups including manipulation with and without grasp. The aim of this paper is to develop an object manipulation method where in addition to being grasp-less, the manipulation task is done in a passive approach. In this method, linear and angular positions of the object are changed and its manipulation path is controlled...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E
دوره 94 1-1 شماره
صفحات -
تاریخ انتشار 2016